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Abstract

Ketone bodies acetoacetate (AcAc) and D-B-hydroxybutyrate (BHB) may provide an alternative carbon source to fuel
exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound
evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic
actions during exercise, athletic performance could be influenced, providing a useful model for the application of
ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with
particular reference to exercise metabolism and substrate energetics.
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Review

Dietary intake influences metabolism

An ancient Spanish proverb Diet cures more than the
lancet’ suggests that the importance of diet in maintaining
good health is an age-old concept. Mechanisms by which
the body uses the fuels we eat to sustain life, or in the case
of excess, store the surplus energy, have fascinated genera-
tions of scientists. Carbohydrates, fat, protein and, for
some, alcohol are the fundamental sources of dietary en-
ergy. Whilst the numbers of dietary macronutrients (food
groups) are limited, the particular composition and relative
contribution of these dietary groups to our calorific needs
vary widely. Until recently, little was known of the meta-
bolic systems that linked diet with human function. In
1937, Krebs made arguably the most important break-
through in biochemistry [1], describing a cycle of enzym-
atic reactions uniting dietary fuel combustion with cellular
energy provision. This final common pathway for substrate
metabolism has allowed the detailed study of the flow of
energy transformation (energetics) from dietary sources to
the ‘energy currency’ adenosine triphosphate (ATP).

Exercise the litmus of metabolic performance
Over the last century, our understanding of the fundamen-
tal processes underlying human performance has expanded
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greatly. At the intersection of elite sport and substrate,
metabolism lays the potential to investigate the processes
that define the limits of human physiology.

The onset of acute exercise triggers a rapid increase in
demand for substrate and oxygen (mediated via an in-
crease in cardiac output), with metabolic rate raised up to
100-fold above resting conditions during high-intensity ex-
ercise [2]. Depending on the relative intensity of exercise,
durations of physical effort may last for minutes, hours or
even days, placing large metabolic, structural and cognitive
demands on body systems to sustain this output. Similar
changes occur in many clinical disease states with high en-
ergy requirements, elevated cardiac output and limited tis-
sue oxygen supply, characteristic of high dependency care,
surgery or medical emergencies. The functional demands
of exercise can be used to quantify responses to treatment
[3], or as a diagnostic tool to identify factors limiting phys-
ical capacity [3,4]. Exercise therefore provides an ideal tool
for the examination of human physical capacity and its
controlling factors, under reproducible conditions.

High-performance athletes as models of fuel metabolism

In many respects, some of the most refined examples of
human physiology and metabolism are to be found in
the highly trained, athletic cohorts of competitive sport.
In particular, endurance sports involving great muscular
recruitment and high levels of aerobic fitness induce
mitochondrial [5,6] and muscular adaptations [7-9] mak-
ing such athletes ideal to study fuel metabolism. Aerobic
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endurance training increases mitochondrial oxidative
capacity and increases selection of fatty acids for fuel at
a given exercise intensity [10-12]. Increased expression
of proteins involved in plasma membrane transport
[13-16], and B-oxidation of fats are also well described
in athletic cohorts [17]. Similarly, increases in the cap-
acity of skeletal muscle to oxidise other blood-borne
substrates such as ketone bodies have been demon-
strated following athletic training [18,19]. Athletes there-
fore represent a useful model to further examine fuel
metabolism, with predictable responses to exercise stress
[12], and a well-characterised metabolic phenotype [20].

Ketone body production: the evolutionary response to
energy crisis

Ketone bodies are fuels endogenously produced by the
body from mobilised fat in response to a variety of physio-
logical [21] or pathological conditions [22]. Ketone bodies,
acetoacetate (AcAc) and D-B-hydroxybutyrate (BHB), are
respiratory fuels that can be oxidised by most body tissues
[21] and are formed in large quantities (up to 150 g/day)
by the liver in response to low blood glucose and insu-
lin [23,24].

Ketogenesis is an evolutionary adaptation conserved
within all higher order organisms to sustain survival dur-
ing famine, illness or energetic stress [25]. In particular, the
capacity to survive for long periods on endogenous fuel re-
serves is a trait of particular importance to humans where
our relatively large brain size renders a steady supply of
glucose critical for cerebral function. In a series of experi-
ments in the 1960s, Cahill demonstrated the importance
of cerebral ketone body oxidation in starvation, where up
to 60% of the brain energy needs are derived from ketones,
replacing glucose as its primary fuel [26-28]. In turn, the
ketone-compensated reduction in glucose utilisation rate,
and preservation of gluconeogenic protein stores [29], en-
ables a profound increase in the capacity for survival [27].
The evolutionary effect of ketone bodies is therefore to
spare carbohydrate reserves, and muscle protein, whilst
themselves being an alternative energy source.

Exercise parallels starvation metabolism

Clearly, the protracted demands of starvation physiology
occur on a much accelerated scale during sustained endur-
ance exercise. Both conditions place a premium on glu-
cose supply, with the finite concentrations of muscular
glycogen known to be a strong determinant of exercise
tolerance [30,31]. Therefore, ketosis as an evolutionary
adaptation to conserve carbohydrates may provide an al-
ternative energy substrate to power working muscle, in
turn sparing intramuscular fuels. However, the application
of ketone body metabolism in this context has not been
appreciated.
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Historically, nutritional strategies to acutely influence
fuel selection during heavy aerobic exercise have largely
failed to ‘spare’ muscular glycogen [32]. The reason for this
seems to be that competition between substrates for res-
piration by working muscle is highly selective, rigidly
favouring carbohydrate as relative workloads increase, des-
pite alternative substrate provision [33,34] (see later sec-
tion on fuel selection in exercise). However, as muscle
carbohydrate content falls during exhaustive exercise,
muscle oxidation of fatty acids does increases with a fall in
respiratory quotient (RQ) [35]. A concomitant increase
in blood ketone concentration is also observed, with cir-
culating PHB levels of 1-2 mM seen following exhaust-
ive exercise [36,37], in contrast to post-absorptive ketosis
of ~0.1 mM [37]. It seems that our evolutionary response
to energy crisis is hardwired to favour ketosis, and endur-
ance exercise performance may be constrained by the
same metabolic considerations pertinent to the starvation
condition.

Dietary substrates alter mitochondrial fuel preference
Randle and colleagues described the glucose-free fatty
acid (FFA) cycle in 1963, suggesting an overall substrate
hierarchy dominated by fatty acid selection in preference
to carbohydrate for oxidative phosphorylation [38]. The
capacity of the mitochondria to alter its preferential fuel
selection was initially recognised by the apparent de-
crease in glycolysis in the presence of increased FFA.
Randle suggested that carbohydrate oxidation could be
regulated by the fatty acid-induced suppression of the
pyruvate dehydrogenase complex (PDC) activation by a
high acetyl-CoA/CoA or nicotinamide adenine dinucleo-
tide (NADH)/NAD" ratio. This in turn elevates citrate
concentrations, inhibiting glycolytic flux at the level of
phosphofructokinase. Whilst generally speaking, the Ran-
dle cycle approximates substrate hierarchy accurately at
rest, the same is not necessarily true when cellular condi-
tions change, such as during exercise.

Dietary substrates and muscle fuel selection during
exercise

The cellular mechanisms that control mitochondrial pref-
erence for substrates during exercise are still to be fully
understood. Recent work has proven that the classical ‘glu-
cose-FFA’ cycle is inadequate as a model of fuel selection
during heavy exercise [33,39], as working muscle becomes
increasingly reliant on glycolysis to provide acetyl-CoA to
the tricarboxylic acid cycle (TCA) cycle, independent of
FFA availability [34]. The rigid preference by muscle for
carbohydrate during exercise reinforces the importance of
muscular and hepatic glycogen stores for powering sus-
tained exercise [30,40,41]. Current nutritional practice in
exercise performance advocates the exogenous supple-
mentation of carbohydrates to maintain glycaemia [42],


http://www.extremephysiolmed.com/content/3/1/17

Cox and Clarke Extreme Physiology & Medicine 2014, 3:17
http://www.extremephysiolmed.com/content/3/1/17

with growing evidence to support a performance-
enhancing effect during an exercise longer than 1 h
[43,44] (for reviews, see [45-47]). Numerous studies have
investigated dietary and pharmacological strategies to in-
crease the exogenous provision of carbon units to the
TCA cycle during exercise. Conflicting reports over the
benefits of raising circulating fatty acids to spare glucose
metabolism [48-52] and the failure of many studies to
show convincing benefits of carbohydrate feeding [53-58]
make a unifying hypothesis regarding optimal dietary
strategy for performance difficult [59].

However, the nutritional provision of ketone bodies as an
alternative fuel substrate may well provide a powerful signal
to reinstate ‘Randle cycle’ competition between substrates
for oxidative respiration [60,61]. Current literature on diet-
ary fuel selection mechanisms has not considered the role
of ketone bodies as a major fuel source in great depth, al-
though the latter are well known to be metabolised by
skeletal muscle [21]. Ketone bodies have a similar RQ
to that of glucose (AcAc =1.0, BHB =0.89) if completely
oxidised [62] and do not rely on glucose transporter
(GLUT) or fatty acid transporters to enter cytosolic or
mitochondrial spaces [63], unlike carbohydrates or fat.

Previous evidence on the role of ketone bodies to fuel
muscular work in humans have been confounded by the
inability to elevate ketone concentrations without the ef-
fects of starvation [64,65] or elevated fatty acids [66]. This
lack of facility to induce acute ketosis has meant that all of
the published literature methods to study fuel selection
during ketosis have employed infusions of either AcAc or
BHB in order to study the role of ketone bodies as oxida-
tive substrates, or signals, in human subjects [67]. Narrow-
ing this search further to those studies conducted during
whole body exercise in healthy subjects results in only a
handful of published reports, derived from fewer than 30
people [68,69]. None of this work studied strenuous exer-
cise, concomitant muscle metabolism or performed work
in athletic cohorts. These early investigations sought to
determine the regulation of ketogenesis and its role in
starvation, obesity and diabetes [70]. However, their find-
ings leave many questions unanswered. Firstly, one of the
most significant findings by Fery and Balasse et al. was a
profound stimulation of exercise on the metabolic clear-
ance of ketone bodies in overnight fasted subjects [69,71].
In two further studies, subjects performed relatively low-
intensity exercise (40%—50% VO, o) for 30 min and 2 h,
respectively, during constant infusions of either aceto-
acetate or PHB [69,72]. Circulating ketone bodies fell
by >1 mM, rates of disappearance of ketones markedly in-
creased and metabolic clearance of ketone increased ap-
proximately five- to eightfold above resting conditions.
Furthermore, the percent of CO, derived from the oxida-
tion of ketones was consistently between 10.1% and 17.6%
of total CO,, suggesting significant oxidation of ketones in
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overnight fasted subjects, even at relatively low workloads.
This may have an important contribution to energy ex-
penditure, thereby conserving whole body glucose stores
during exercise, in addition to altering mitochondrial fuel
selection and energetics, both important determinants of
physical performance.

Thermodynamics of muscle metabolism as determinants
of oxidative performance

Conservation of energy and mitochondrial fuel selection
The energy currency ATP is required to power all mamma-
lian cells. Cells derive most of their chemical energy from
the combustion of carbon substrates using oxygen (although
some specialised cells rely solely on anaerobic energy pro-
duction). This highly regulated process occurs within the
mitochondria, specialised organelles sensitive to the chan-
ging energy requirements of the cell. During exercise, ATP
demand increases dramatically, placing great pressure on
mitochondrial oxidative metabolism. Manipulating diet, and
therefore substrate physiology, unquestionably alters human
performance, and although poorly acknowledged, the rea-
sons for these effects may lie in the thermodynamic rela-
tionships at the core of mitochondrial oxidation.

In simple terms, our body is driven by a series of con-
trolled chemical reactions, resulting in the oxidation of
carbon substrates to water and CO,. Thus, for a given
quantity of fuel, the maximum amount of non-expansive
work that can be obtained from a closed system is denoted
by the Gibbs free energy (G). Described by Willard Gibbs
in 1873 [73], this translation of the second law of thermo-
dynamics relates enthalpy and entropy to the conservation
of energy, expressed as:

AG = AH - TAS (1)

Therefore, substrates with greater enthalpy can yield
greater potential energy to power a system if fully oxidised.
Thus, heat of combustion is of inherent importance when
considering the potential impact of mitochondrial sub-
strate selection on energetic performance (Table 1). For
example, pyruvate, the end product of glycolysis, has a
lower heat of combustion per C, unit than either fHB or
palmitate, providing less potential energy to the electron
transport chain.

Table 1 Heat of combustion of selected fuels

Substrate AH° kcal/mol  AH° kcal/mol C, units
CigH3,0, (Palmitate) —2,384.8 -2980
C4HgOs (B Hydroxybutyrate) — —487.2 —2436
CgH 1506 (Glucose) —669.9 —2236
C5HgO3 (Lactate) —326.8 -2179
C3H405 (Pyruvate) —2785 —185.7

Adapted from Veech et al. [96].


http://www.extremephysiolmed.com/content/3/1/17

Cox and Clarke Extreme Physiology & Medicine 2014, 3:17
http://www.extremephysiolmed.com/content/3/1/17

From Equation 1, we can also see that the larger the
value of Gibbs free energy, the more energy can be ex-
changed with the surrounding system. In non-standard
chemical conditions, such as those encountered in hu-
man physiology or other biological conditions [74], an
alternative expression of this equation is used:

AG = AG® + RT ¢n Q (2)

Therefore, by integrating the reaction quotient (Q) into
its expression, Equation 2 allows the specific chemical
conditions where the reaction is taking place and the
principle of mass conservation to be incorporated into
the calculation of free energy. Thus, Equation 2 can be
further related to cellular substrate energetics, where
the common endpoint for the conservation of energy
arising from substrate oxidation is in the phosphate
bonds of ATP. Therefore, the latent energy conserved in
these bonds (AGaTp hydrolysis) can be calculated as:

e 4 g ADPIP

A further consideration for the application of thermo-
dynamics in metabolism is the concept of near-
equilibrium relationships between metabolic pathways,
each part of a complex interdependent network, with an
overall net forward flux [75]. This kinetic linkage be-
tween redox couples of the major fuel pathways and the
phosphorylation potential of the cell has its origins in
the early work of Haldane [76], Klingenburg [75], Krebs
[77-80] and later Veech [81-85] among many others.
Therefore, despite the apparent simplicity of oxidising
substrates to liberate chemical energy, the useful free en-
ergy of substrate combustion to perform work is influ-
enced by the architecture of the metabolic pathway and
the enthalpy of the fuel [86]. For these reasons, the avail-
able free energy to perform work, the free energy of
ATP hydrolysis (AG’ atp), is not equivalent for all dietary
fuels.

Mitochondrial redox state is affected by the substrate
oxidised

As discussed above, the generation of the universal en-
ergy currency, ATP, requires the conversion of ADP + Pi
to ATP. This process is driven by the electrochemical
potential difference across the inner mitochondrial
membrane. However, it should be noted that the dona-
tion of electrons to power the electron transport chain is
from the reducing equivalents, NADH and flavin aden-
ine dinucleotide (FADH,), both of which can be de-
scribed as a redox couple with respect to the standard
membrane potential (that of the hydrogen electrode, Ey)
[84]. These reducing equivalents undergo cyclical reduc-
tion and oxidation, intimately linking the TCA cycle and
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the electron transport chain. It becomes apparent that
the larger the electrical potential difference between
mitochondrial phases created by the pumping of protons
into the inter-mitochondrial space [87], the greater the
potential free energy. Therefore, consideration for the
redox couples of the electron transport chain can be in-
tegrated into the calculation of free energy (AG’), calcu-
lated as:

AG = -n F AE (4)

(where 7 is the number of electrons and F is the Faraday
constant). The electrochemical gradient (AE) created by
the electron transport chain relies on the continuous
supply of reducing equivalents from NADH and FADH,.
The energy of the proton motive force generated by the
pumping of protons from the mitochondrial matrix (via
complexes 1, 3 and 4 of the electron transport chain)
can vary depending on the redox span between com-
plexes of the electron transport chain [88,89]. Therefore,
the relative supply of reducing equivalents generated by
the architecture of each pathway influences the electrical
potential difference between the (NAD'/NADH) couple,
the co-enzyme Q couple, and thus the AG’ orp.

Ketone bodies alter mitochondrial energy transduction
Ketone bodies are more chemically reduced than pyru-
vate and result in an increased electron transport chain
redox span through the reduction of the NAD" couple
and oxidation of the co-enzyme Q couple. This, in turn,
creates a greater AG atp for the generation of ATP. In
the working rat heart, this has been reported to result in
an increase in hydraulic efficiency (expressed as work in
J/mol of O, consumed) of 28% during perfusion of ke-
tone bodies compared with glucose alone [90]. Alterna-
tive substrates such as fat are highly reduced, and thus
contain a large amount of potential energy, but require
more O2/mol of C2 to oxidise. In addition, the effective
redox span of the mitochondrial electron transport chain
is lower when fatty acids are oxidised, due to half of the
reducing equivalents produced in B-oxidation being in
the form of FADH2 rather than NADH. This reduces
(comparatively) the redox span between (NAD*/NADH)
couple and the co-enzyme Q couple thus reducing
AG’ s1p. Furthermore, elevated fatty acids induce the ex-
pression of uncoupling proteins which dissipate stored
mitochondrial proton gradients and contribute to wors-
ening metabolic efficiency through non-ATP generating
metabolic cost [2].

The observed improvements in metabolic efficiency (or
energetic performance) in the isolated heart may translate
to greater muscular work output for a given oxygen
requirement during exercise and thus sustain physical
endurance. The implications of ketosis to enhance
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mitochondrial energetics and their potential role in disease
are discussed in the detailed reviews of Veech et al. [89,91].

Applications for ketosis to enhance athletic metabolism
Providing ketone bodies to spare intramuscular reserves
mimics the physiology of starvation, where ketone bod-
ies provide fuel for oxidation and act as signals limiting
glucose and glycogen metabolism [90]. The supplemen-
tation of ketone bodies in physiologic states other than
starvation may make use of our body’s hardwired meta-
bolic response to elevated blood ketones. Ketones can be
readily oxidised by the working muscle and exert a
strong influence over glycolytic flux in vivo [21]. Ele-
vated concentrations of ketones in a perfused working
rat heart resulted in the suppression of glycolytic flux,
even reporting a promotion of glycogen synthesis during
continuous hydraulic work [90,92].

Ketone bodies could provide a logical alternative for the
delivery of carbon units to the TCA cycle, free of the limi-
tations in mitochondrial and sarcolemmal membrane
transport that restrict fat and carbohydrate utilisation [63].
Further to acting as an alternative carbon supply, the
greater enthalpy of ketone combustion over pyruvate
could provide greater potential energy for conservation in
the phospho-anhydridic bonds of ATP. Therefore, mim-
icking the physiology of starvation during exercise (by
raising circulating ketone concentrations) may alter the
hierarchical preference of mitochondrial substrate selec-
tion, effecting an improvement in substrate energetics.

New frontiers in ketone metabolism

Previously, a controlled physiological ketosis required ad-
herence to a low-carbohydrate high-fat ‘ketogenic diet,
starvation or the administration/infusion of the salts of
acetoacetate or D-B-hydroxybutyrate [93,94]. All of these
methods are unpleasant, impractical or have potentially
harmful side effects [95]. One possible solution to this
problem is to create an ester linkage between a ketone body
and an alcohol, such as 1,3-butanediol, that itself undergoes
metabolism to a ketone via hepatic conversion [96]. This
ester bond can be easily broken by gut or tissue esterases to
release both components without the need for a salt or acid
[97]. Such esters have recently been developed and tested
in humans [98] and are capable of inducing the biochemical
appearance of prolonged fasting within minutes of con-
sumption. These new dietary methods to deliver a pure ke-
tosis from exogenous sources allows, for the first time, an
evaluation of ketone body metabolism itself, free of the
confounding milieu required to produce ketone bodies en-
dogenously [97] (Figure 1).

Ketone esters and nutritional ketosis
The first practical ketone ester synthesised to be hydro-
lysed in plasma, free of a sodium salt load and effectively
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induce a rapid circulating ketonaemia was described by
Birkhahn et al. [99,100] in the late 1970s. This monoes-
ter of glycerol and acetoacetate (monoacetoacetin) was
delivered parenterally to rats. Prior to this, the butyl al-
cohol, RS-1, 3-butanediol, was known to be oxidised in
the liver, producing both HB and AcAc in isolated liver
mitochondria [101], rats [102] and humans [103]. Two
iso-enantiomers of fHB were produced from the admin-
istration of a racemic mix of RS-1,3-butanediol, with the
S enantiomer not naturally found within the body [101],
although it is oxidised by body tissues [104-106]. In
1995, the administration of both oral and parenteral ke-
tone esters containing RS-1,3-butanediol, and either
BHB or acetoacetate, was described in pigs by Desrochers
[107]. Now, human safety and tolerability trials have been
successfully undertaken using ketone monoesters of fHB
and R-1,3-butanediol [98]; the opportunity to examine
ketosis in detail during a number of therapeutic and
physiological conditions appears a step closer.

Not all ketosis is equivalent; high-fat diets vs. exogenous
ketones

The popularity of ketosis as a weight loss intervention
by adherence to a high-fat, low-carbohydrate diet (for
systematic review, see [108]) owes much of its notoriety
to the Atkin’s diet fad of the early 2000s [109]. However,
ketogenic diets are far from a novel discovery. The Inuits
had almost exclusive intake of dietary fat and protein
throughout the long arctic winter, where naturally occur-
ring dietary carbohydrate sources are virtually non-
existent. However, the metabolic conditions of chronic
dietary ketosis are in stark contrast to the rapid exogen-
ous delivery of ketone bodies now possible with ketone
esters. In essence, the efficacy of the low-carbohydrate
diet is dependent upon depleted hepatic and muscle
carbohydrate reserves increasing circulating FFA and en-
dogenous ketone body production. Low muscular carbo-
hydrate content during heavy sustained exercise is well
known to impair physical performance [30]. The recent
interest in low-carbohydrate diets to enhance submaxi-
mal exercise tolerance [110-112] are not thought to be
driven by ketosis, rather by an up-regulation in fatty acid
oxidation [51] (in lieu of low muscle glycogen content)
over weeks of specific dietary intervention [113]. Acute
exogenous delivery of ketone bodies elevates ketone levels
without the prior depletion of muscle carbohydrates
necessary to induce ketosis via endogenous production.

Conclusion

Ketone bodies have long been overlooked as alternative
substrates to power our bodies. The reasons for this are
numerous but in no small part related to the negative con-
notations associated with the discovery of ketosis in critic-
ally ill diabetic patients [22,114]. Furthermore, ketosis has
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Figure 1 Endogenous and exogenous ketosis. Contrast between ketosis induced by starvation or high-fat diet (endogenous ketosis) and that
generated by nutritional ketone ester ingestion (exogenous ketosis). Ketone bodies are endogenously produced in the liver from high circulating
free fatty acids (FFA) from adipolysis. In contrast, nutritional ketone esters are cleaved in the gut and are absorbed through the gut epithelium
and monocarboxylate transporters (MCT) into the circulation or undergo first-pass metabolism to ketone bodies in the liver. High concentrations
of ketone bodies inhibit the nicotinic acid receptor (PUMA-G)-controlling adipolysis. Once released into the bloodstream, the ketones are
metabolised by extrahepatic tissues in an identical fashion and being transported across the plasma and mitochondrial membranes by MCTs.
D-B-Hydroxybutyrate (D-BHB) is converted to acetoacetate by D-B-hydroxybutyrate dehydrogenase (D-BHB DH) before entering the tricarboxylic
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until now only been achievable in starvation states or
high-fat low-carbohydrate diets, conditions which are un-
pleasant, difficult to sustain and negate many of the desir-
able effects of ketone metabolism [115]. The evolutionary
conservation of ketone bodies as energy substrates has a
sound rationale, their being thermodynamic advantages to
their oxidation, as well as the preservation of alternative
energy reserves essential to our survival. The importance
of oxidative efficiency and conservation of carbohydrate
reserves is vital not just in starvation but on a greatly ac-
celerated scale during endurance exercise. Exercise places
large demands on oxidative metabolism for the sustained
provision of ATP to the working muscle. Finite reserves of
intramuscular glycogen, and a loss of flexibility for mito-
chondrial fuel selection during high intensities of aerobic
work [33], underline the importance of substrate metabol-
ism for athletic performance. Given the well-characterised
demands of endurance exercise and the importance of

dietary substrates on athletic metabolism, there is a clear
rationale for the nutritional provision of exogenous ketone
bodies in this context. With the recent development of
novel forms of dietary ketone ester now undergoing ro-
dent and human testing, the stigma of this much maligned
substrate may yet be challenged.
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