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Abstract

Prolonged exposure to microgravity results in chronic physiological adaptations including skeletal muscle atrophy,
cardiovascular deconditioning, and bone demineralization. To attenuate the negative consequences of
weightlessness during spaceflight missions, crewmembers perform moderate- to high-load resistance exercise in
conjunction with aerobic (cycle and treadmill) exercise. Recent evidence from ground-based studies suggests that

low-load blood flow-restricted (BFR) resistance exercise training can increase skeletal muscle size, strength, and
endurance when performed in a variety of ambulatory populations. This training methodology couples a
remarkably low exercise training load (approximately 20%-50% one repetition maximum (1RM)) with an inflated
external cuff (width, ranging between approximately 30-90 mm; pressure, ranging between approximately
100-250 mmHg) that is placed around the exercising limb. BFR aerobic (walking and cycling) exercise training
methods have also recently emerged in an attempt to enhance cardiovascular endurance and functional task
performance while incorporating minimal exercise intensity. Although both forms of BFR exercise training have
direct implications for individuals with sarcopenia and dynapenia, the application of BFR exercise training during
exposure to microgravity to prevent deconditioning remains controversial. The aim of this review is to present an
overview of BFR exercise training and discuss the potential usefulness of this method as an adjunct exercise
countermeasure during prolonged spaceflight. The work will specifically emphasize ambulatory BFR exercise
training adaptations, mechanisms, and safety and will provide directions for future research.
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Introduction

Acute microgravity exposure results in rapid cephalad
fluid shifts, space motion sickness, vestibular impair-
ment, and musculoskeletal unloading [1]. However, the
overall space environment encompasses both micrograv-
ity exposure and related challenges such as increased
background radiation, social isolation, disruption of cir-
cadian rhythm (sunrise every 90 min), and access to a
limited food variety (high salt prepackaged) and water
supply [1]. These environmental stimuli interact to elicit
chronic physiological adaptations including decreased
bone mineral content and density, compromised maximal
aerobic capacity, and reduced skeletal muscle mass and
strength [2]. The morphological and structural alterations
that occur within the skeletal muscle tissue as a result of
microgravity exposure were uncovered following several
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Shuttle Transport System, Mir, and International Space
Station (ISS) investigations [3-5]. These data suggest that
the rate of skeletal muscle loss relative to the duration of
microgravity exposure is nonlinear, with the greatest losses
early in the mission. It is also evident that skeletal muscle
atrophy and dysfunction are most prominent in the knee
extensor (KE; —6% to —12%) and plantar flexor (PF; -6%
to —24%) muscle groups [6].

The physiological mechanisms of disuse- or unloading-
related skeletal muscle atrophy have been previously
reviewed [7,8]. In brief, a change in skeletal muscle size is
a reflection of the temporal rates of muscle protein syn-
thesis and degradation. For instance, across a 24-h period,
if the rate of muscle protein synthesis is greater than the
rate of breakdown, net muscle protein balance will be
positive and protein will be gained. In contrast, if the rate
of muscle protein breakdown is greater than the net rate
of muscle protein synthesis, the net balance will be nega-
tive and protein will be lost. Although debated, evidence
suggests that unloading induced skeletal muscle atrophy
in humans occurs primarily as a result of decreased basal
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muscle protein synthesis and a reduced synthetic response
following feeding [7,9]. In-flight, variables such as partici-
pation in exercise countermeasures, age, gender, genetics,
stress level, total energy intake, macronutrient compos-
ition, and preflight fitness level can influence the rates of
muscle protein synthesis and breakdown; therefore, it is
difficult to systematically determine the most important
factor facilitating spaceflight-induced skeletal muscle atro-
phy, though the unloading itself is assumed to be the most
potent factor.

To defend against skeletal muscle atrophy and physio-
logical deconditioning on the ISS, crewmembers perform
2.5 h per day (including time for equipment setup and
breakdown) of aerobic and/or resistance exercise; how-
ever, exercise prescription, exercise preference, and exer-
cise adherence vary among crewmembers. The exercise
equipment on the ISS, including a treadmill, a cycle erg-
ometer, and the Advanced Resistive Exercise Device
(ARED), have been engineered to operate in a weightless
environment and are housed within vibration isolation
systems to prevent damage to the ISS structure. During
treadmill exercise, crewmembers must wear special har-
nesses that attach to the sides of the treadmill via bun-
gee cords to maintain contact with the treadmill surface
and to provide musculoskeletal loading during exercise.
Crewmembers adjust the length of the bungee cords to
set the pull-down load to a percentage (usually 60%—
80%) of 1-G body mass. The cycle ergometer exercise
operates similarly to an upright/recumbent bicycle and
is used primarily for cardiovascular and aerobic condi-
tioning. Resistance exercise in space is particularly chal-
lenging because the microgravity environment precludes
the use of traditional free weights or weight stacks.
However, ARED offers over 20 different resistance exer-
cises including squat (SQT), heel raise, dead lift, bench
press, and upright row [10]. The resistance is provided
by vacuum cylinders that offer up to 273 kg of applied
external load [11], and inline flywheels simulate 1-G in-
ertia when the load changes direction during exercise.
Since crewmembers are weightless in microgravity, the
large loading capability is required because body mass
must be added to the prescribed load in order to observe
similar musculoskeletal forces to those on the ground.
Thus, the current ISS exercise hardware allows for high-
intensity exercise, enabling crewmembers to run up to
12 mph on the treadmill and train with heavy loads
using ARED.

Although ARED and the other exercise devices pro-
vide excellent loading and resistance capabilities on the
ISS, this specialized exercise hardware is expensive to
build, launch, and maintain in an isolated spaceflight en-
vironment. Further, maintenance and repair must be
performed by crewmembers, and spare parts for the
complex devices may not be immediately available.
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Exercise hardware for future long-duration exploration
missions may need to be even more robust, compact,
and portable than the current devices. There may also
be fewer modes of exercise available to crewmembers,
and aerobic and resistance trainings may have to be per-
formed on a single device. It is therefore important to
investigate adjunct therapies that might enhance the ef-
fectiveness of aerobic and/or resistance exercise in the
event that the exercise hardware itself poses limitations.
Exercising at a low intensity with blood flow restriction
(via inflation cuffs) has recently become a popular
method of training in Japan [12]. The purpose of this re-
view is to present an overview of BFR exercise training
and discuss its potential usefulness as an adjunct exer-
cise countermeasure for prolonged spaceflight.

BFR exercise prescription and training

BFR resistance training

BFR resistance exercise training (also known as
KAATSU when specific equipment is utilized [12]) com-
bines low training intensity (approximately 20%—50%
1RM) with an external pressure cuff applied to the exer-
cising limb [13-16]. BER exercise protocols vary and are
primarily influenced by cuff size, pressure, and the cir-
cumference (CIRC) of the limb being exercised [17];
however, most use three to five sets of exercise with 30-
to 90-s rest periods [18]. Maintaining the cuff pressure
(CP) during exercise and the rest interval also appears to
be an important variable in order to increase the meta-
bolic demand in both type I and type II muscle fibers
[19]. As a result, the total number of repetitions per-
formed in a training session can vary and is also deter-
mined by whether the first set of BFR exercise is to
volitional fatigue [18] or a predetermined number of
repetitions [20].

Overall, BFR exercise training studies have ranged
from 6 to 90 days in duration (Figure 1) and most show
dramatic muscular adaptations. For example, Fujita et al.
[21] reported 6.7% and 3% increases in KE strength and
size, respectively, after 6 days of twice-daily BFR knee
extension (KEx). Likewise, Yasuda et al. [22] demon-
strated even larger improvements in 1IRM SQT (14%)
and quadriceps muscle size (7.8%) from 2 weeks of
twice-daily BFR SQT exercise. Moreover, BFR SQT and
leg curl exercise performed 6 days per week for 2 weeks
resulted in approximately 17% and 22% increases in
SQT and leg curl 1RM, respectively, and an 8.5% in-
crease in thigh cross-sectional area (CSA) [23]. Studies
implementing less frequent BFR resistance exercise ses-
sions over longer training durations also show substan-
tial muscular adaptations. Clark et al. (2011) observed
an 8% increase in KE strength after 4 weeks of BFR exer-
cise (3 days per week), while Takarada et al. [24]
reported approximately 10% increases in KE strength
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Figure 1 Relative change (%) KE muscle size and strength with
BFR exercise training. Numbers in the figure correspond to
reference citations [27,28,107-118).

and size over 8 weeks (2 days per week) of training.
When studies are statistically combined, mean effect
sizes ((post-mean — pre-mean)/pre-standard deviation
and adjusted for sample size bias) [25] for muscle hyper-
trophy and strength for BER resistance exercise are 0.39
and 0.58, respectively (compared to 0.01 and 0.000 for
low-load training without cuff inflation) [15]. An import-
ant difference between high-load and BFR training is
that increased muscle strength corresponds with muscle
hypertrophy within the first 4 weeks of BFR exercise
training, which is in contrast with the nervous system
adaptations that result in enhanced muscle strength over
the same duration of high-load resistance exercise train-
ing [26].

BFR aerobic training

Similar to BER resistance training, the BFR aerobic exer-
cise training studies couple low-intensity walking or cyc-
ling (approximately 20%-40% of maximal oxygen
consumption, VO,max) with an external pressure cuff of
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approximately 200 mmHg applied to the upper legs [27-
29]. Walk training studies showed that the metabolic
cost of walking is approximately 3% higher and that
heart rate (HR) is approximately 30 bpm higher during
walking with BFR compared to normal walking at the
same speed [29]. The training adaptations of 3-weeks of
twice-daily BFR walking training at 20% of VO,max
included an increase in leg press and leg curl 1RM of ap-
proximately 8% and an increase in upper leg CSA of ap-
proximately 6%. No changes in muscle size or strength
were observed in the control group that performed the
same walking protocol without BFR [28,29]. Similarly, 3
weeks of three times-per-week BFR cycling for 15 min at
40% VO,max resulted in increases in thigh CSA (3.4%),
KEx strength (7.7%), and VO,max (6.4%). The control
group cycled for 40 min at the same intensity and
showed no change in muscle strength or aerobic fitness
[27]. Traditionally, aerobic exercise is prescribed at ap-
proximately 75% of VO,max to elicit improvement in
aerobic fitness. BFR aerobic exercise not only improves
aerobic fitness at a low intensity, but also increases
muscle strength and size, which are not usually observed
following an aerobic training program.

Mechanisms underlying BFR exercise training adaptations
Data from BFR exercise training studies demonstrate
that this novel exercise approach is gaining scientific
merit as a potential alternative to traditional resistance
exercise, and a growing body of literature is emerging to
suggest a potential to also improve aerobic fitness. There
was a recent surge in publications describing the under-
lying mechanisms associated with BFR resistance train-
ing adaptations; however, the physiological mechanisms
explaining the observed changes remain elusive.

Muscle metabolism, motor unit recruitment, and fiber
activation

Evidence suggests that type II muscle fibers are recruited
at a low load during BFR exercise [19]. A current hy-
pothesis indicates that BFR resistance exercise causes
type I muscle fibers to fatigue quickly due to low oxygen
availability; hence, activation of type II muscle fibers and
a greater reliance on anaerobic metabolism are required
[14]. These events result in an accumulation of muscle
metabolites that stimulate the production of systemic or
local growth factors that initiate muscle protein tran-
scription and translation [30-32]. A convincing evidence
for type II muscle fiber activation was demonstrated by
Krustrup et al. [19] who showed that phosphocreatine
concentrations in both slow and fast twitch fibers fol-
lowing BFR resistance exercise were reduced to an
equivalent concentration as compared to high-intensity
resistance exercise. However, fast twitch fiber recruit-
ment evaluated by inorganic phosphate splitting
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occurred in only 31% of participants performing one set
of BER resistance exercise compared to 70% of subjects
performing one set of high-load exercise [32]. When
multiple sets of BFR exercise were performed with con-
tinued BFR during the rest intervals, inorganic phos-
phate splitting was similar to multiple sets of high-load
resistance exercise [33]. Therefore, the overall effort and
threshold of fatigue reached during a session may facili-
tate the acute training response [34]. Further evidence
for insufficient oxygen availability and anaerobic type II
fiber activation exists in studies reporting enhanced
muscle biopsy lactate [35], blood lactate (La) [20], and
decreased pH [20] following BFR exercise compared to
exercise at the same load without external CP [30,31].

Systemic hormonal response

Anabolic and catabolic hormonal responses have been
frequently evaluated following acute and chronic BER re-
sistance exercise (Table 1). It is hypothesized that accu-
mulation of metabolic by-products and/or the hypoxia-
induced stimulation of afferent nerve fibers results in an
increase in secretion of the growth hormone (GH) and
GH-releasing hormone [36]. Takarada et al. [30] reported
that circulating GH concentrations following an acute bout
of BFR exercise were 290 times greater than the baseline;
however, Pierce et al. [37] showed a lower but still physiolo-
gically significant ninefold increase in GH concentration
using a similar protocol. A corresponding increase in the
circulating insulin-like growth factor-1 (IGF1) has been
observed during BFR KEx exercise (20% 1RM, four sets to
exhaustion, 160-180 mmHg) and at 10-30 min post-
exercise [36]. In contrast, the circulating IGF1 concentra-
tion was not increased up to 180 min following an acute
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bout of BER KEx exercise (20% 1RM, 200 mmHg, four sets,
75 total repetitions, 30-s rest periods) [20]. It is also argued
that the increase in IGF1 observed in some studies could be
related to a hemoconcentration as a result of plasma vol-
ume (PV) changes following BFR resistance exercise [13].
Following a training period, there was a report of a progres-
sive increase in circulating IGF1 at rest following 2 weeks of
twice-daily BFR SQT and leg curl exercise (20% 1RM, three
sets, 15 repetitions/set, 30-s rest periods) [23]. Therefore,
the overall relationship between BFR resistance exercise
and the GH-IGF1 axis remains controversial.

The influence of acute and chronic BFR exercise on
other anabolic hormones such as testosterone (T) is also
unclear [38]. For example, neither Reeves et al. [39] nor
Fujita et al. [20] observed changes in total or free follow-
ing arm or leg BFR resistance exercise, respectively. In
contrast, Madarame et al. [40] reported a post-exercise
elevation in total T following three sets of BFR KEx and
flexion. Chronic BFR walking [29] or resistance exercise
[41] has also failed to show resting changes in T. Worthy
of note, studies do show that circulating cortisol (Cort)
is elevated following BFR and high-load resistance exer-
cise [20,40,42], which suggests a similar stress response.
However, circulating Cort concentration is primarily
associated with catabolism and muscle protein break-
down [43]. Recently, the overall association between the
acute systemic hormonal response to resistance exercise
and muscle hypertrophy has been questioned. West
et al. [44] reported no additional rise in muscle protein
synthesis or the phosphorylation of signaling proteins
following resistance exercise during elevated systemic
concentrations of T, GH, and IGF1 compared to low sys-
temic concentrations of the same anabolic hormones.

Table 1 Systemic biomarkers and hormonal responses to an acute bout of BFR exercise

Reference Age (year)® Exercise(s) Intensity Cuff width CP (mmHg) Significant increase (p < 0.05) No change (p > 0.05)
citation

[39] 21 EF,PFx 30% 1RM NR 20| SBP La, GH T, Cort
[20] 32 KEx 20% 1RM NR 200 La, GH, Cort IGF1, T
[40] 26 EF EEKEXKF  30% 1RM 30X 450 mm 130-200 La, Cort, NorEpi, GH, T

[29] 21 Walking 50 m/min, 2 min- 200X NR mm 200 GH Cort
[30] 20-22 KEx 20% 1RM 33 %800 mm 214 La, NorEpi, GH, IL6 CK, LP
[119] 25-40 EF 30%-50% 1RM 90 x 700 mm 0-100 La

[120] 24-28 EF,EESQTKF  20% 1RM 30X 45 mm 190-230 La, NorEpi, GH, Hemat Na, K,
[121] 20-22 KEx 30% 1RM NR 200 La, NorEpi, GH

[37] 22 KEx 20% MVC NR 280 GH

21 22 KEx 20% 1RM NR 160-220 CK, Myo, IL6
[52] 21 EF KEX,KF 30% 1RM 40% 1,750 mm  >160 GH, NorEpi T

[42] 70 KEx 20% 1RM NR 200 La, Cort, GH Glu

[36] 34 KEx 20% 1RM 33 %880 mm 160-180 La, NorEpi, GH, IGF1, VEGF Ghrl

?Age expressed as a mean, or if not available, as a range; CP cuff pressure, NR not reported, EF elbow flexion, PFx plantar flexion, KEx knee extension, EE elbow
extension, SQT squat, Myo myoglobin, La blood lactate, NorEpi norepinephrine, IL6 interleukin-6, LP lipid peroxidase, CK creatine kinase, pH blood pH, Cort cortisol,
IGF1 circulating insulin-like growth factor 1, T testosterone, Na sodium, K potassium, Myo myoglobin, Glu glucose, Ghrl ghrelin, VEGF vascular endothelial growth

factor.
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Hence, local factors may provide greater stimuli to in-
duce BER resistance exercise adaptations.

Gene expression and cell signaling

An acute bout of high-load resistance exercise elicits ana-
bolic and catabolic responses that are altered in a complex
temporal manner to achieve muscle hypertrophy. Briefly,
muscle protein synthesis and myogenic gene transcripts
(e.g., myogenin) are upregulated within 2 h post-exercise
and peak approximately 8 h post-exercise, whereas pro-
teolytic ligases (muscle-specific RING finger protein-1
(MuRF-1), Atrogin-1) are upregulated 1-4 h after exercise
and downregulated within 8 h of exercise termination
[45]. An approximate threefold increase in the phosphor-
ylation of ribosomal protein S6 kinase beta-1 (S6K1), a
downstream component of the mammalian target of rapa-
mycin (mTOR) signaling pathway and regulator of trans-
lation initiation and elongation, and a 46% increase in the
fractional synthesis rate (a measure of muscle protein syn-
thesis) have been previously shown following BFR resist-
ance exercise [20]. mRNA expression of genes that
regulate satellite cell activity (mechano-growth factor,
IGF1 receptor, myogenin, MyoD), cell size (myostatin),
and protein turnover (MuRF1, mTOR, S6K1) were not
different between BFR and low-load exercise up to 3 h
post-exercise [46]. At 8 h post-BFR or low-load exercise,
myogenic gene transcripts (IGF1, MyoD, and myogenin)
were not different from the baseline; however, proteolytic
transcripts (Atrogin-1, MuRF-1, and Forkhead box O3
(FOXO3A)) were downregulated twofold from baseline in
the BER group only [47]. Following 8 weeks of BER resist-
ance training, myostatin gene expression was downregu-
lated to a similar extent compared to high-load training
[48], with a trend (p =0.06) toward decreased activin IIb
(myostatin receptor). There were also elevations in genes
associated with myostatin function (growth and differenti-
ation factor-associated serum protein-1) and signaling
(SMAD family) [48]. Overall, the molecular pathways that
regulate BFR resistance exercise-induced muscle hyper-
trophy have not been extensively studied. Given that
muscle hypertrophy results from a positive net muscle
protein balance (synthesis > breakdown) across a training
period, greater examination of molecular events is needed
to better understand how BFR resistance exercise stimu-
lates muscle growth.

The limitations and safety of BFR exercise

BFR exercise limitations

The application of BFR exercise appears to be limited to
peripheral muscle groups; thus, core, back, and neck
muscles cannot be specifically targeted using this meth-
odology. Higher perceptual ratings of perceived exertion
and pain during the rest intervals of sets have also been
reported, which could limit the application of this

Page 5 of 13

training methodology [49]. The pressure applied to the
blood vessel during BER exercise is likely the root cause
of discomfort and is associated with cuff width [17] and
the layer of soft tissue situated between the cuff and the
vessel [50]. The cuff sizes most frequently used in re-
search studies are either narrow (approximately 5 cm) or
wide (approximately 13 c¢cm). From the data, it appears
that lower cuff pressures (90-120 mmHg) are required
to occlude venous blood flow when the wider cuffs are
used compared to the narrow cuffs (pressures, 160—180
mmHg [51]. However, the narrow cuffs and associated
pressures have repeatedly been shown to cause improve-
ments in muscle strength and size when combined with
low-load resistance exercise [52]. Exercise training adap-
tations have been observed with wider cuffs with the
same [53,54] or lower cuff pressures [55]; however, BFR
exercise performed at supra-systolic blood pressure
(SBP) with wider cuffs may restrict blood flow to a level
that reduces exercise volume and increases discomfort
compared to narrower cuffs [56]. Therefore, cuff width
is an important variable for determining BFR exercise
prescription and may be a limiting factor if not taken
into consideration with CP.

Hemostasis

The potential for blood coagulation and venous
thrombus following blood pooling is the most frequently
discussed (hypothesized) risk, and therefore, it has been
comprehensively evaluated in multiple acute studies
(Table 2). Most recently, Clark et al. [57] observed an in-
crease in tissue plasminogen activator (tPA), a fibrinolytic
protein that catalyzes the conversion of plasminogen to
plasmin, immediately following a single bout of BFR exer-
cise. This finding is consistent with those of Nakajima
et al. [58] who reported that an acute bout of BFR exercise
increased tPA antigen without altering plasminogen acti-
vator inhibitor-1 (PAI-1) or D-dimer (D-d). Together,
these results suggest that BFR exercise may acutely in-
crease fibrinolytic activity, thus reducing the risk for blood
coagulation.

Acute cardiovascular stress

The acute cardiovascular responses to BFR exercise
training are important to consider because this type of
exercise could provide the greatest benefit for individuals
with a variety of health risks that preclude them from
performing traditional resistance exercise. Although
most BER literature focus on muscular effects, it is im-
portant to note that resistance and aerobic BFR exercises
cause increases in HR and blood pressure that are
greater than those observed with exercise performed at a
similar intensity without BFR [29,59]. The increase in
HR is an important aspect of BFR exercise because it
allows cardiac output (CO) to be maintained, despite a
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Table 2 Hemostasis markers with acute BFR resistance exercise

Reference  Exercise Intensity Sets (total repetitions) CP (mmHg) Cuff width (mm) Significant increase  No significant change
citation (p < 0.05) (p>0.05)

[57] KEx 30% 1RM 3 (24-36) 1.3 *xSBP 80 x 830 tPA Fib, D-d, PTF

[20] KEx 20% 1RM (75) 200 NR TAT, PTF 1,2, D-d
[42] KEx 20% 1RM 4 (75) 200 NR D-d

[122] Leg press  30% 1RM 4 (75) 150-160 65 X 650 PTF, TAT, D-d

[58] Leg press  30% 1RM 4 (75) 1725 NR tPA D-d, Fib, PAI-1

SBP systolic blood pressure, NR not reported, TAT thrombin-anithrombin complex, tPA tissue plasminogen activator, D-d D-dimer, Fib fibrinogen, PAI-1

plasminogen activator inhibitor-1, PTF prothrombin fragment 1,2.

decrease in venous return due to the CP [36]. Since
most BFR studies are conducted in healthy subjects, it is
important to evaluate the cardiovascular response to
BER in individuals presenting with cardiovascular disease
risk factors in a controlled setting.

Muscle damage and reperfusion
Maintaining CP during the between-set rest interval is
one essential feature of the BFR exercise prescription. As
a result, higher levels of muscle soreness and perceived
exertion have been reported during and/or following
BFR-restricted exercise compared to the same low-
intensity exercise performed without CP [60,61]. Delayed
onset muscle soreness is a common occurrence follow-
ing eccentric muscle actions during high-load resistance
exercise [62]. In contrast, it appears that concentric
muscle actions compared to eccentric muscle actions re-
sult in greater muscle soreness following BER resistance
exercise [60]. It is unclear why this is the case; however,
eccentric-induced muscle soreness is typically associated
with mechanical stress, which may be attenuated with
BER exercise given the very low training loads. Systemic
physiological markers of BER resistance exercise-induced
muscle damage are conflicting. Although neither creat-
ine kinase nor myoglobin were elevated following two
BFR resistance exercise bouts [20,30], one case of
rhabdomyolysis has been reported in the literature [63].
In addition to the potential for muscle damage with
BER training, there is a hypothetical risk for microvascu-
lar dysfunction as a consequence of the reperfusion that
occurs when blood flow is restored after a period of re-
striction or ischemia [64]. During reperfusion, there is an
acute release of inflammatory molecules, clotting factors,
and reactive oxidative species that impair microvascular
function [65]. Further, nitric oxide bioavailability (a medi-
ator of vasodilation) decreases when blood flow is
restored, causing impaired arterial vasodilation and
increased sheer stress. Repeated reperfusion injury can
eventually cause a wound that influences endothelial
function. Renzi et al. [64] have shown a significant reduc-
tion in flow-mediated vasodilation 20 min after BFR
walking exercise, suggesting the potential for endothelial
dysfunction. Recent evidence also suggests increased

sarcolemma permeability (evidenced by staining of tetra-
nectin) following BFR exercise, which may be caused by
cell damage from increased production of reactive oxy-
gen species [66]. Furthermore, although not statistically
significant, Goldfarb et al. [67] showed that both protein
carbonyls and glutathione ratios (systemic indicators of
oxidative stress) were almost doubled following BER re-
sistance exercise in seven male subjects. Given that the
time course of reactive oxygen species generation was
limited to 15 min post-exercise, it is essential that future
acute studies have a sufficiently high number of subjects
and extended time courses.

Overall, BFR exercise training encompasses a variety of
new variables (cuff width, CP, cuff inflation duration) for
exercise prescription, and understanding these interac-
tions in terms of safety is complex [68]. To date, the most
comprehensive data set on side effects from BFR exercise
training was established using survey methodology. The
most reported incidents from approximately 13,000
people participating in KAATSU training were as follows:
bruising (13.1%), numbness (1.3%), cerebral anemia
(0.3%), cold feeling (0.1%), pulmonary embolism (0.01%),
rhabdomyolysis (0.01%), deterioration of ischemic heart
disease (0.02%), and venous thrombus (0.06%) [69].

BFR exercise in space—potential applications
Crewmembers commonly experience losses in aerobic
capacity and muscular strength following long-duration
spaceflight. Crewmembers that perform daily moderate-
to high-intensity exercise throughout the mission dur-
ation generally return in considerably better condition
than their counterparts that engage in little or low-
intensity activity. Exercise with BFR may provide a
means to perform resistance exercise with a low load or
perform aerobic exercise at a slower walking speed or
lower pedaling resistance in the event of ISS exercise
hardware failure or in future exploration missions with
less robust exercise hardware.

Muscle size, strength, and endurance

Cook et al. [70] recently showed that KE CSA was main-
tained (-1%) in a group that performed BFR resistance
exercise over a 30-day period of lower-limb unloading
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compared to a non-exercise control group (-7.5%). Simi-
larly, maximal voluntary contraction (MVC) was also
preserved in the BFR resistance exercise group (-2%),
while the control group exhibited a 15.6% decline. Sur-
prisingly, the BFR group also had a 28% increase in sub-
maximal (approximately 40% MVC) muscular endurance
compared to a 24% decline in controls. These results
suggest that BFR resistance exercise may be an effective
exercise countermeasure to prevent losses in KE size
and strength while simultaneously improving muscular
endurance [70].

The plantar flexors are another major muscle group
susceptible to atrophy during unloading with the great-
est plasticity evident in the soleus. For example, follow-
ing 6 months on the ISS, soleus muscle size declined by
18% [71-73] and was accompanied by a decrement in PF
peak torque of 20%—-29% across the velocity spectrum
[73]. Even more concerning is that these results were
evident despite the performance of resistance and aer-
obic exercise countermeasures [73]. It is hypothesized
that the improved loading capability (273 kg) of ARED
onboard the ISS will mitigate future changes in soleus
muscle size and attenuate atrophy of other muscle
groups. However, the soleus muscle is best isolated when
the knees are flexed, which reduces the contribution of
the gastrocnemius to the muscle action [74]. Currently,
this motion is difficult to reproduce using ARED be-
cause movements are primarily performed in the stand-
ing position. Another problematic aspect of targeting the
soleus is a limited range of motion. As loads are
increased during plantar flexion exercise, the range of
motion can decrease substantially. Thus, because BFR
resistance exercise is performed using low training loads,
it may be possible to exercise throughout a crewmem-
bers' full anatomic range of motion to more effectively
target the soleus. Although BFR resistance exercise has
not yet been performed in an unloading analog, a recent
ground-based study showed a 30% increase in PF MVC
following 4 weeks of training; these findings help to sub-
stantiate its potential application as a countermeasure to
unloading [55].

Orthostatic challenge

BFR exercise is also a potential countermeasure to ortho-
static intolerance [75-77], a condition reported to occur in
up to 30% of astronauts returning from brief space shuttle
flights of 4—10 days [78] and in 80% of astronauts follow-
ing long-duration missions [79]. During exposure to
microgravity, blood volume (BV) shifts from the capaci-
tance vessels of the lower body to those in the face and
head. Upon return to 1-G, there is excessive pooling in
the lower limbs, resulting in orthostatic hypotension and
syncope [80]. Research has shown that elastic cuffs worn
on the upper thighs during flight help to maintain central
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and peripheral hemodynamics and mitigate post-flight
orthostatic intolerance [81]. However, the ability of these
cuffs to completely mitigate cardiovascular deconditioning
during spaceflight has not been definitively determined
[82]. It is hypothesized that the most effective in-flight
countermeasure would be a gravity-like stimulus, such as
lower body negative pressure (LBNP). Exercise with LBNP
of 1.0 to 1.2 times body weight during —6° head-down-tilt
(-6HDT) bed rest has been shown to maintain upright ex-
ercise capacity [83].

BER exercise elicits several features that are similar to
LBNP including lower extremity blood pooling, decreased
venous return, and increased autonomic activation [75].
Nakajima et al. [75] showed that restriction of blood flow
reproduces the effects of standing on HR, stroke volume
(SV), and norepinephrine release, thus simulating a
gravity-like stress during short-duration ~6HDT bed rest.
Furthermore, Kubota et al. [76] demonstrated that BFR re-
sistance exercise during short-duration ~6HDT bed rest
elicits hemodynamic and neurohumoral responses that
approximate a gravity-specific stress on the cardiovascular
system. In the before-mentioned study, subjects partici-
pated in 24 h of —-6HDT bed rest resulting in 4.4% and
7.8% losses of BV and PV, respectively. Subjects performed
BER leg press resistance exercise (30% 1RM, four sets, 30/
15/15/15 repetitions, 1-min rest intervals, 65 x 650-mm
cuff width, 150-160 mmHg CP), while remaining at
—-6HDT. SV was significantly reduced during BFR resist-
ance exercise and was similar to the measurement
obtained when standing. These results suggest that fre-
quent applications of BFR exercise during microgravity
may provide a stimulus to the cardiovascular system that
simulates 1-G, which may reduce post-flight orthostatic
intolerance. Future investigations should examine the im-
pact of BER exercise during long-duration bed rest on the
physiological responses to orthostatic stress.

BFR exercise in space—unanswered questions

To date, the majority of evidence for the application of
BFR in space stems from research exploring skeletal
muscle physiology during acute or chronic exercise stud-
ies. Few BER studies have focused on the acute effects or
training adaptations on cardiovascular or skeletal health.
Since exposure to microgravity compromises human
physiology in a variety of ways, there is a clear need to
expand the scope of BFR research to include other
physiological systems.

Cardiovascular health

Cardiac mass decreases to levels that are well below nor-
mal in conditions of weightlessness and simulated
weightlessness. Perhonen et al. [84] demonstrated that
left ventricular mass (measured by magnetic resonance
imaging) decreased by 15% during prolonged supine bed
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rest and by 12% after short-duration spaceflight. It
appears as though disuse-induced cardiac atrophy does
not influence systolic function [84]; however, one of the
most important clinical consequences of cardiac atrophy
may be its influence on diastolic function. Invasive stud-
ies of cardiac performance before and after 2 weeks of
—6HDT bed rest have shown that there is a leftward shift
in the diastolic pressure-volume curve after bed rest,
resulting in a smaller left ventricular end-diastolic vol-
ume for a given filling pressure [85]. Because the effects
of BER on cardiac morphology and function have not yet
been investigated, it is unclear if this form of exercise
could provide the stimulus required to completely pre-
vent cardiac deconditioning. The novelty of BFR appears
to be the unique combination of venous BV pooling and
restricted arterial blood inflow, resulting in a decreased
SV and increased HR, while maintaining CO [36]. Con-
sequently, in contrast to traditional aerobic exercise [86],
eccentric loading of the heart and prevention of cardiac
atrophy may not occur during BER exercise.

Previous studies have established that deconditioning
leads to detrimental vascular changes such as endothelial
dysfunction, decreased arterial compliance, and athero-
sclerosis [87,88]. Hesse et al. [89] found that 13 days of
bed rest impaired endothelium-dependent arterial relax-
ation in healthy men, while Tuday and colleagues [88]
reported that spaceflight significantly reduced vessel
compliance [88]. Alternatively, cross-sectional studies
using middle-aged and older adults have found that
regular aerobic exercise improves arterial compliance
[90,91]. As previously mentioned, although BFR exercise
appears to acutely decrease endothelial function [64],
the chronic effects of BFR exercise remain equivocal.
Kim et al. [92] found that arterial compliance of the
large and small arteries was not affected by 4 weeks of
BER resistance training. Conversely, Ozaki et al. [93]
reported that carotid arterial compliance was improved
by 10 weeks of BFR walk training in elderly subjects.
Given that reduced endothelial function and arterial
compliance are early markers of atherosclerosis [94],
surrogate markers of cardiovascular function [95], and
predictors of future cardiovascular complications
[96,97], further examination of both the acute and
chronic effects of BFR exercise on vascular health is
needed.

Skeletal health

In addition to the cardiovascular consequences associated
with prolonged spaceflight, bone health is a primary con-
cern. Bone demineralization occurs predominately in the
long bones of the lower limbs, with maximal bone loss oc-
curring in the calcaneus and the hip [98]. Skeletal unload-
ing in astronauts can result in losses of 1%—2% per month
in bone mineral density [99,100]. On the Mir year-long
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mission, bone measurements of astronauts showed a 10%
reduction of the lumbar vertebrae [101]. Despite having a
lower mechanical load during training, there is some evi-
dence in ambulatory subjects that BFR resistance training
may be beneficial to bone. For instance, after an acute
bout of BER resistance exercise in young men, there was a
significant reduction in bone resorption as evidenced by
serum N-terminal cross-linking telopeptide of type I colla-
gen [102]. Six weeks of BER resistance exercise training in
older men also showed a 21% increase in serum bone-
specific alkaline phosphatase, a marker of bone formation
[102]. Although the mechanism for how low-load BER re-
sistance exercise improves bone parameters has not been
clearly established, Loenneke et al. (2012) indicate that
BER exercise may induce physiological responses as a re-
sult of interstitial fluid flow-induced sheer stress within
the osteocyte membrane [103] and/or the activation of
vascular endothelial growth factor via the hypoxia indu-
cible transcription factor pathway [104]. Further work is
needed to determine how BER training could protect bone
health during prolonged unloading.

Perspectives
A BFR exercise training device and Russian Braslet cuffs
are currently onboard the ISS. To our knowledge, these
devices have not been used with exercise by ISS crew-
members. However, BFR exercise may have already been
inadvertently performed by US astronauts on Skylab. In
a recent historical account, it was noted that during the
first few days of the mission, astronauts had significant
problems adhering to the exercise workloads prescribed
on the cycle ergometer [105]. At low intensities, no
issues were observed; however, at high intensities, work-
loads could not be reached and the astronauts described
significant leg fatigue and discomfort [105]. The root
cause was the combination of a padded waist belt and
shoulder harness that restricted circulation to the legs as
training loads increased. A solution to the problem was
eventually implemented, but it is plausible that the
restricted circulation these crewmembers experienced
was similar to the BFR cycling methods that have been
recently evaluated by researchers [27].

Opverall, it is unlikely that BFR exercise will be used as
a standalone exercise countermeasure onboard the ISS
given the significant presence of ARED among other
more traditional exercise devices. However, in future
space exploration missions beyond the ISS, both aerobic
and resistance BFR exercise trainings may be given some
consideration depending on the vehicle capacity and the
capability of onboard exercise devices. Combining low-
load BER resistance exercise with the current moderate-
to high-load could help attenuate skeletal muscle atro-
phy without excessive loading of the shoulders, lower
back, and/or joints. Specifically targeting the plantar
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flexors with BFR resistance exercise training may be an
alternative method to prevent soleus atrophy and dys-
function. Research also suggests that BFR exercise may
simulate the cardiovascular response to standing in 1-G,
which could potentially reduce orthostatic intolerance
upon return to earth. However, few studies have evalu-
ated BFR exercise using a chronic ground-based unload-
ing analog (Table 3), and only two acute studies have
used —6HDT bed rest, which is the analog that reflects
the fluid shift observed during spaceflight.

Future work should evaluate the safety of exercise pre-
scription and determine the influence of new program-
ming variables (e.g., leg CIRC, adipose tissue thickness,
CP, and cuff width) on human physiology. Once acute
exercise prescription is understood, BFR exercise should
be evaluated across multiple physiological systems using
long duration -6HDT bed rest. Measuring cardiovascu-
lar and skeletal outcomes in addition to skeletal muscle
parameters during prolonged unloading is essential to
enhance our understanding of the effects of this novel
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method of exercise. Furthermore, because BFR exercise
training has implications for sarcopenia and other
muscle wasting conditions, a mechanistic understanding
of the cellular pathways resulting in muscle growth
would be beneficial [106].

Conclusion

Researchers should be commended for their pioneering
efforts in understanding the mechanistic and adaptive
responses to BFR exercise. Both BFR resistance and aer-
obic exercise prescription appear to be in early stages of
development relative to traditional resistance and aer-
obic training. Currently, low-load BFR resistance exer-
cise increases muscle size and strength in ambulatory
participants and attenuates muscle atrophy and strength
loss during periods of unloading. Low-intensity BFR aer-
obic exercise while ambulatory enhances muscle size
and strength and simultaneously increases aerobic fit-
ness. As the science behind BFR exercise training
matures in the future, it is evident that this type of

Table 3 Restriction of blood flow and BFR exercise while supine or using musculoskeletal unloading models

Reference Method(s) Highlighted outcome(s) Limitation(s)
citations
[75] KAATSU (65 x 650-mm cuff, 50-100 mmHg, 24 h of —6HDT bed rest resulted in |body One subject developed neurocirculatory
no muscle contractions, 10 min) following ~ mass,| BV, [PV, and |IVCd; 10 min of presyncope 5 min after 100 mmHg
24-h —6HDT bed rest 50 mmHg, KAATSU: THR, |SV, |CO, [IVCd, KAATSU. There were no symptoms in the
—Hct, «Hb, «BV, and «PV. Authors remaining seven subjects
suggest that KAATSU reproduces the effect
of a gravity-like stress during simulated
weightlessness
[76] KAATSU (65 x 650-mm cuff, 150-160 24 h of —6DHT bed rest: |body mass, |BV, Potential conflict of interest between the
mmHg) with —6HDT leg press resistance LPV, and tHct. KAATSU + —6DHT leg press KAATSU device and the journal publishing
exercise (30% 1RM, four sets, repetitons: resistance exercise:tHR, 1BP, |SV, and 1CO. the research study
30/15/15/15, 1-min rest between sets) Authors suggest that KAATSU with leg press
following 24-h —6HDT bed rest exercise mimics the exercise hemodynamic
response to exercise in 1-G
[77] Supine with KAATSU (60 x 605 mm, Supine with KAATSU: |SV, THR, 1TPR, and Case study: potential conflict of interest
200 mmHg, no muscle contractions vs. 1CO. Authors suggest that KAATSU induced ~ between the KAATSU device and the
standing) hemodynamics similar to standing journal publishing the research study. Fluid
shift stimuli are not introduced
[123] Supine with KAATSU (60 x 605 mm, Supine with KAATSU: 1FVd, |FBf, |IVCd, Fluid shift stimuli are not introduced
50-250 mmHg, no muscle contractions vs.  |LVDd, |CO, tHR, and 1TPR. Authors suggest
standing) that KAATSU induced hemodynamics similar
to standing
[70] BFR (60 % 830 mm, 150 mmHg) KEx Following 30 days of ULLS: «>KE CSA, 1KE Fluid shift stimuli are not introduced. ULLS
resistance exercise (20% MVC, three sets, endurance, |PF CSA, |PF MVC, «IGF1, and model may not be appropriate for systemic
repetitons to fatigue 1.5-min rest between  «—IGFBP3. Authors suggest that BFR exercise  blood markers
sets) during 30 days of unloading via ULLS s effective in maintaining muscle size and
strength and improving muscular endurance
during unloading
[124] Restriction of blood flow (77 x 770 mm, Restriction of blood flow: «>KE MVC, «>PF Fluid shift stimuli are not introduced. Cast

200 mmHg, five sets, 5-min bouts,
3-min rest between sets during 14 days of
cast immobilization

CON60,«»leg/thigh CIRC, and «>GH. Authors
suggest that restriction of blood flow to the
lower extremity prevents disuse muscular
weakness

immobilization model differs from
spaceflight musculoskeletal unloading due
to joint mobility

BFR blood flow-restricted, BV blood volume, PV plasma volume, IVCd inferior vena cava diameter, HR heart rate, SV stroke volume, CO cardiac output, Hct
hematocrit, Hb hemoglobin, TPR total peripheral resistance, FVd femoral vein diameter, FBf femoral arterial blood flow, LVDd left ventricle end-diastolic dimension,
KE knee extensor, CSA cross-sectional area, CIRC circumference, PF plantar flexor, CON60 concentric 60° sec™', MVC maximal voluntary contraction, IGF1 circulating
insulin-like growth factor, IGFBP3 circulating insulin-like growth factor binding protein-3, GH growth hormone, TRM one repetition maximum, 6HDT —6° head-
down-tilt bed rest, ULLS unilateral lower limb suspension, | decreased, 1 increased, <> no change.



Hackney et al. Extreme Physiology & Medicine 2012, 1:12
http://www.extremephysiolmed.com/content/1/1/12

training could be applicable as an adjunct countermeas-
ure to combat musculoskeletal and cardiovascular dys-
functions during missions beyond low-earth orbit.
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