MEETING ABSTRACT

Open Access

The effect of acclimation to the heat on the resting sweat response

Simon K Delves^{1*}, John S Kelly², Matthew Gledhill², Rebecca Warke², Joanne L Fallowfield¹

From 15th International Conference on Environmental Ergonomics (ICEE XV) Portsmouth, UK. 28 June - 3 July 2015

Introduction

Living and working in hot dry environments increases the thermal load on the body with adverse consequences ranging from impaired physical and mental performance to serious heat illness [1]. Acclimatisation can reduce the impact of these consequences, but risks to performance and health can never be completely eliminated. Acclimatisation to a hot environment results in an earlier onset of sweating [2,3], an increased sweat rate for an absolute core temperature [3], and a reduced sweat electrolyte concentration [3], Evaluation of the sweating response is traditionally achieved through an exercisebased standardised heat tolerance test undertaken in controlled environmental conditions. The collection of a sweat sample requires a reliable and valid method that avoids contamination of the sample during collection. However, analysis of sweat samples can be time consuming, involving laboratory-based analysis techniques, and not conducive to field use. This study evaluated the sensitivity of a resting sweat collection approach for assessing heat acclimation status in young adults.

Methods

Eight male volunteers undertook a 6-day laboratory-based heat acclimation protocol (wet-bulb globe temperature index 27.5 (0.5) °C). A standardised Heat Tolerance Test (HTT) was performed the day prior to the acclimation period (HTT₁), and repeated the day after the acclimation period (HTT₂). During each HTT, heart rate (HR), rectal temperature (Tr) and skin temperature (Ts), were measured at 5 min intervals. A resting sweat sample was stimulated by pilocarpine iontophoresis and collected by the ELITech, Wescor Macroduct resting sweat collection system prior to each HTT. For the acclimation exercise, each

* Correspondence: NAVYINM-EMSAP3@mod.uk

¹Environmental Medicine & Science, Institute of Naval Medicine Gosport, UK Full list of author information is available at the end of the article

volunteer was instrumented with a Polar heart rate monitor and a rectal thermistor. The acclimation protocol maintained a constant thermal strain model of 90 min of intermittent exercise and rest, where Tr was elevated to 38.8 °C (by undertaking stepping exercise at a work rate equivalent to 50%VO₂max). On attaining 38.8 °C, the volunteer rested until Tr had decreased to 38.5 °C, after which stepping exercise was recommenced. Differences in variables between HTT₁ and HTT₂ were assessed using paired Student *t*-tests. Time series data were analysed with a repeated measures analysis of variance (ANOVA) with post hoc Bonferroni corrected *t*-tests where appropriate.

Results

Physiological acclimation after the 6-day acclimation period was evident in all volunteers. Heart rate, Tr and Ts responses were lower during HTT_2 compared with HTT_1 (P < 0.05), and total exercise time increased between day-1 and day-4, and between day-5 and day-6 (P < 0.05). Resting sweat sodium chloride concentration decreased (58 [14] vs. 46 [16] mmol.L⁻¹) between HTT_1 and HTT_2 (P < 0.05).

Discussion

The ability to identify acclimatisation status is desirable when preparing for physical work in the heat. The present study was an exploratory study to evaluate a resting sweat collection approach to assess heat acclimation status. Findings from this study indicate that the resting sweat collection approach may be a good indicator of acclimation status, where changes in sweat sodium chloride concentration were identified between pre and post acclimation.

Conclusion

The change in resting sweat concentration was consistent with acclimation. Further development is required for this

© 2015 Delves et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

method to be used as an indicator of heat acclimation status.

Authors' details

¹Environmental Medicine & Science, Institute of Naval Medicine Gosport, UK. ²Department of Adventure Education, University of Chichester, Chichester, UK.

Published: 14 September 2015

References

- 1. Joint Service Publication 539: Climatic Injuries in the Armed Forces: Prevention and Treatment. 2014.
- Fox RH, Goldsmith R, Kidd DJ, Lewis HE: Acclimatisation to heat in man by controlled elevation of body temperature. *Journal of Physiology* 1963, 166:530-547.
- Nadel ER, Pandolf KB, Roberts MF, Stolwijk AJ: Mechanisms of thermal acclimation to exercise and heat. *Journal of Applied Physiology* 1974, 37:515-520.

doi:10.1186/2046-7648-4-S1-A118

Cite this article as: Delves *et al.*: **The effect of acclimation to the heat on the resting sweat response.** *Extreme Physiology & Medicine* 2015 **4** (Suppl 1):A118.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit