Extreme Physiology & *Medicine*

MEETING ABSTRACT

Measuring body core temperature using a novel non-invasive sensor

Yoram Epstein^{1,2*}, Savyon Mazgaoker¹, Doron Gruber¹, Daniel S Moran³, Ran Yanovich¹, Itay Ketko¹, Yuval Heled^{1,2}

From 15th International Conference on Environmental Ergonomics (ICEE XV) Portsmouth, UK. 28 June - 3 July 2015

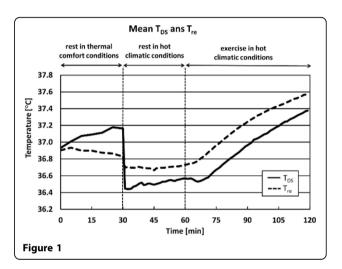
Introduction

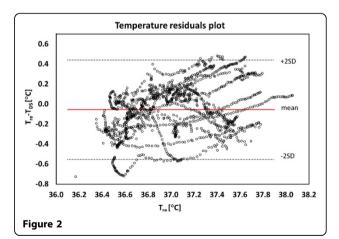
In various jobs workers may be exposed to extreme environmental conditions and physical activities. Under these conditions it is imperative to follow body temperature in workers in order to protect them from overheating leading to heat related injuries. The Dräger Double Sensor (DS) is a novel non-invasive device based on heat flux balance approach for the assessment of body core temperature [1]. The purpose of this study was to compare DS measurements to rectal temperatures and to evaluate the agreement between the two measurements.

Methods

17 male subjects dressed in shorts performed the following experimental protocol: 30 min rest under thermal comfort conditions, 30 min rest under hot climate (40 °C, 40 % rh) and 60 min of exercise under the hot climatic conditions. Continuous measurements were obtained with the DS (T_{DS}) in parallel to rectal temperature (T_{re}) (YSI-401 thermistor).

Results


During rest under comfortable climatic conditions T_{DS} tended to be lower than T_{re} (Figure 1). During heat exposure, mean T_{DS} was within +0.3 °C of mean T_{re} . A good linear correlation (r = 0.99) between the T_{DS} and T_{re} during exercise in the heat was found, which enabled to adjust T_{DS} . A scatter plot of Temperature residuals (T_{re} - T_{DS}) of the corrected data was within ±0.5 °C of mean residual (Figure 2).



¹Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel

Full list of author information is available at the end of the article

Discussion

 $T_{\rm DS}$ is within a reasonable range from the "gold standard" $(T_{\rm re})$ during heat stress. It seems that $T_{\rm DS}$ equilibrates slower than $T_{\rm re}$ and, therefore, the agreement between

© 2015 Epstein et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated. the two measurements is low during the first part of the exposure (30 minutes).

Conclusion

The results are promising for potential use of the DS in workers under field conditions, especially under environmental heat stress and when dressed in protective garments. Further investigations are required to validate the data under various conditions (e.g. higher heat stress).

Authors' details

¹Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel. ²Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Isreal. ³Ariel University and Washington College of Education, Israel.

Published: 14 September 2015

Reference

 Gunga HC, Sandsund M, Reinertsen RE, Sattler F, Koch J: A non-invasive device to continuously determine heat strain in human. J Thermal Biol 2008, 33:297-307.

doi:10.1186/2046-7648-4-S1-A28

Cite this article as: Epstein *et al.*: Measuring body core temperature using a novel non-invasive sensor. *Extreme Physiology & Medicine* 2015 4(Suppl 1):A28.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit