Skip to main content

Table 2 The effects of environmental hypoxia on biomarkers of glycolysis in skeletal muscle

From: Skeletal muscle energy metabolism in environmental hypoxia: climbing towards consensus

First author

Year

Organism

Muscle model

Hypoxia model

p(O 2 ) min (kPa)

Duration (d)

Marker

Change

Green [15]

1992

Human

vl

4,300 m

12.8

1

Phosphofructokinase activity

↓

       

Hexokinase activity

=

Roberts [20]

1996

Human

vl

4,300 m

12.8

1

Glucose oxidation

=

Pastoris [29]

1995

Rat

gnm

10% O2

10.1

3

Hexokinase activity

=

       

Phosphofructokinase activity

↑

       

Lactate dehydrogenase activity

=

       

Pyruvate kinase activity

↓

Pastoris [29]

1995

Rat

sol

10% O2

10.1

3

Hexokinase activity

=

       

Phosphofructokinase activity

↓

       

Lactate dehydrogenase activity

=

       

Pyruvate kinase activity

=

Dutta [28]

2009

Rat

mix

349 mmHg

10.3

7

Lactate dehydrogenase activity

↑

Vigano [16]

2008

Human

vl

4,559 m

12.4

8

Enolase levels

↓

van Hall [21]

2009

Human

vl

4,100 m

13.1

14

Lactate dehydrogenase activity

=

De Palma [27]

2007

Rat

gnm

10% O2

10.1

14

β-enolase levels

↓

       

Phosphoglyercomutase 2 levels

↓

       

Pyruvate kinase levels

↑

       

Triose phosphate isomerase levels

↓

Young [22]

1984

Human

vl

4,300 m

12.8

18

Hexokinase activity

=

       

Lactate dehydrogenase activity

=

Levett [18]

2012

Human

vl

5,300 m

11.3

19

Hexokinase activity

=

Roberts [30]

1996

Human

vl

4,300 m

12.8

21

Glucose oxidation

↑

Green [15]

1992

Human

vl

4,300 m

12.8

21

Phosphofructokinase activity

↓

       

Hexokinase activity

↑

Daneshrad [24]

2000

Rat

sol

10% O2

10.1

21

Hexokinase activity

↑

       

Lactate dehydrogenase activity

=

       

Phosphofructokinase activity

=

       

Pyruvate kinase levels

=

Green [19]

2000

Human

vl

6,194 m

10.1

21

Lactate dehydrogenase activity

↑

Green [17]

1989

Human

vl

8,848 m

7.1

40

Hexokinase activity

↓

       

α-GPDH activity

=

       

Lactate dehydrogenase activity

=

       

Phosphofructokinase activity

=

       

Pyruvate kinase levels

=

van Hall [21]

2009

Human

vl

4,100 m

13.1

56

Lactate dehydrogenase activity

=

McClelland [25]

2002

Rat

sol

4,300 m

12.8

56

Lactate dehydrogenase levels

=

       

Monocarboxylate transporter 1 levels

=

       

Monocarboxylate transporter 4 levels

↓

McClelland [25]

2002

Rat

pla

4,300 m

12.8

56

Lactate dehydrogenase levels

=

       

Monocarboxylate transporter 1 levels

↓

       

Monocarboxylate transporter 4 levels

↓

McClelland [25]

2002

Rat

gnm

4,300 m

12.8

56

Lactate dehydrogenase levels

=

       

Monocarboxylate transporter 1 levels

=

       

Monocarboxylate transporter 4 levels

=

Abdelmalki [23]

1996

Rat

sol

13% O2

13.1

64

Lactate dehydrogenase activity

=

       

Phosphofructokinase activity

↑

       

Hexokinase activity

=

Abdelmalki [23]

1996

Rat

pla

13% O2

13.1

64

Lactate dehydrogenase activity

=

       

Phosphofructokinase activity

=

       

Hexokinase activity

=

Abdelmalki [23]

1996

Rat

rq

13% O2

13.1

64

Lactate dehydrogenase activity

=

       

Phosphofructokinase activity

=

Abdelmalki [23]

1996

Rat

wq

13% O2

13.1

64

Lactate dehydrogenase activity

=

       

Phosphofructokinase activity

↑

Levett [18]

2012

Human

vl

8,848 m

7.1

66

Hexokinase activity

↓

Ou [26]

2004

Rat

edl

5,500 m

11.0

90

Lactate dehydrogenase activity

=

  1. ↑ Change in biomarker is indicative of an increase in β-oxidation in hypoxia.
  2. = No change in biomarker in hypoxia.
  3. ↓ Change in biomarker is indicative of a decrease in β-oxidation in hypoxia.
  4. Abbreviations: edl extensor digitorum longus, mix mixed skeletal, pla plantaris, q quadriceps, rq red quadriceps, sol soleus, vl vastus lateralis, wq white quadriceps.