Skip to main content
  • Meeting abstract
  • Open access
  • Published:

Relationship between performance, air ventilation efficiency and muscle oxygenation in Firefighters

Introduction

Firefighting is a hazardous task associated with a heavy workload where task duration may be limited by air cylinder capacity. Increased fitness may lead to better air ventilation efficiency and task duration at a given heavy work intensity.

Methods

Thirteen male firefighters (age: 28.4 ± 5.1 years; height: 175.5 ± 4.5 cm; mass: 84.4 ± 9.0 kg; VO2peak: 47.8 ± 5.1 mLO2.min-1.kg-1) completed the following tests on 3 different days while wearing firefighting protective clothing (FPC), self-contained breathing apparatus (SCBA) and air cylinder: 1- The graded walking test (GWT) for measuring different physiological parameters while connected to a metabolic system (gas exchanges); 2- The 10 METS treadmill test (T10) designed to measure the time to ventilate air from the cylinder at 10 METS, the intensity needed to complete the fire fit test work simulation described by Deakin et al. (1) within 8 min (2); 3- The simulated work circuit (SWC) to measure the time needed to perform a test mimicking different firefighting tasks while wearing FPC and breathing with the SCBA. Participants performed the SWC as quickly as possible while respecting regulations of the test protocol. Moreover, skeletal muscle oxygenation (deoxyhemoglobin, HHb) was measured during all three tests.

Results

Firefighters who performed the SWC in a shorter time had lower air cylinder ventilation values on the T10 (r = -0.495, P < 0.05), better peak oxygen consumption (r = -0.924, P < 0.001) during the GWT and performed longer until exhaustion on the GWT (r = -0.789, P < 0.001). Participants who completed the SWC more rapidly and reached a higher VO2peak also had lower VE and VE/VO2 values during submaximal workload on the GWT. Moreover, they had greater skeletal muscle deoxygenation during the SWC (HHb, r = -0.593, P < 0.05).

Discussion

Greater aerobic fitness was associated with greater air ventilation efficiency of faster firefighters on the SWC. According to Holmér and Gavhed (3), cardiovascular strain is lower in individuals with higher maximal aerobic capacity for a given submaximal intensity. Moreover, correlation between SWC completion time and HHb suggests that better aerobic fitness enhances deoxygenation in the vastus lateralis muscle during exercise where the aerobic process of energy production is solicited (4).

Conclusion

These results demonstrate that the fastest participants on the SWC had better air ventilation efficiency that could prolong interventions in difficult situations requiring air cylinder use. Moreover, the fastest participants had a greater skeletal muscle deoxygenation during the SWC.

References

  1. Deakin JM, Pelot RP, Smith JM, Stevenson JM, Wolfe LA, Lee SW, von Heimburg E, Rasmussen AK, Medbo JI: Development of a bona fide physical maintenance standard for CF and DND fire fighters. 1996, Queen's University, Kingston, Ontario, Canada

    Google Scholar 

  2. Dreger RW, Petersen SR: Oxygen cost of the CF-DND fire fit test in males and females. Applied Physiology, Nutrition, and Metabolism. 2007, 32 (3): 454-462. 10.1139/H07-020.

    Article  PubMed  Google Scholar 

  3. Holmér I, Gavhed D: Classification of metabolic and respiratory demands in fire fighting activity with extreme workloads. Applied Ergonomics. 2007, 38 (1): 45-52. 10.1016/j.apergo.2006.01.004.

    Article  PubMed  Google Scholar 

  4. Bae SY, Hamaoka TK, Katsumura T, Shiga T, Ohno H, Haga S: Comparison of muscle oxygen consumption measured by near infrared continuous wave spectroscopy during supramaximal and intermittent pedalling exercise. International Journal of Sports Medicine. 2000, 21 (3): 168-174. 10.1055/s-2000-8880.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Lajoie.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gendron, P., Freiberger, E., Laurencelle, L. et al. Relationship between performance, air ventilation efficiency and muscle oxygenation in Firefighters. Extrem Physiol Med 4 (Suppl 1), A147 (2015). https://doi.org/10.1186/2046-7648-4-S1-A147

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/2046-7648-4-S1-A147

Keywords