Skip to main content
  • Meeting abstract
  • Open access
  • Published:

Neuromuscular fatigue during hypoxia is mediated by the hypoxic ventilatory response


Neurons of the corticospinal tract are inherently sensitive to oxygen availability and, in response to hypoxia, reduce their metabolic requirements and activity [1]. Consequently, hypoxia is associated with neuromuscular fatigue, attributed in part to central (i.e., CNS) mechanisms [2]. Although changes in cerebral blood flow (CBF), mediated by the ratio of hypoxia induced vasodilation to hypoxic ventilatory response (HVR) induced hypocapnia (i.e., PETCO2) [3], may be implicated in the development of central fatigue, the contribution from the chemoreflex control of HVR and CBF vs. reductions in CBF per se has yet to be isolated.


Neuromuscular function, indicated by voluntary torque production, motor evoked potentials (MEP), M-waves and cortical voluntary activation (cVA) of the flexor carpal radialis muscle during isometric wrist flexion was assessed (n = 8; 27 ± 8 y) during 3 separate conditions: 1) poikilocapnic hypoxia (Poikilo); 2) isocapnic hypoxia (Iso); and 3) isocapnic hypoxia and cyclooxygenase inhibition using Indomethacin (Indo) to selectively reduce CBF (estimated using transcranial Doppler ultrasound). End-tidal forcing was used to control PETO2 (51.5 ± 5.1 mmHg) during all conditions and PETCO2 at eucapnia during Iso (43.4 ± 4.0 mmHg) and Indo (41.6 ± 3.8 mmHg). Measurements were taken during baseline and upon steady-state response (i.e., stable SaO2) to hypoxia (approximately 5 minutes).


The experimental conditions successfully isolated CBF and PETCO2. Iso and Indo were associated with a pronounced HVR (0.93 ± 0.60 L·min-1.SaO2-1 and 1.15 ± 0.72 L·min-1.SaO2-1) vs. Poikilo (0.26 ± 0.15 L·min-1·SaO2-1, p < 0.05). Torque was reduced from baseline in all conditions (-10.9 ± 13.7 Nm, p = 0.03). MEP amplitude (% M-wave) decreased in Poikilo (-4.5 ± 3.5%, p = 0.02) and Indo (-4.5 ± 4.8%, p = 0.02) vs. Iso (0.8 ± 2.8%; p = 0.9). No changes were observed in M-wave (p = 0.81). cVA decreased in all conditions (p < 0.01); however, reductions were greater during Iso (-11.5 ± 9.3%, p = 0.01) and Indo (-12.5 ± 9.1%, p = 0.04) vs. Poikilo (-3.8 ± 11.5%, p = 0.77).


Consistent with previous research [2], hypoxia resulted in impaired neuromuscular function (i.e., reduced torque) in all conditions. These reductions were mediated by the CNS, as cVA decreased in the absence of changes in M-wave. Reductions in cVA were greater during Iso and Indo, suggesting an association with the magnitude of the HVR. Reduced CBF during Poikilo and Indo was associated with decreased motor cortex excitability; however, was not associated with decrements in torque or cVA.


This study demonstrates that the severity of CNS-mediated neuromuscular fatigue during hypoxia is dependent on the magnitude of the HVR, independent of changes in CBF.


  1. Neubauer JA, Sunderram J: Oxygen-sensing neurons in the central nervous system. J Appl Physiol. 2004, 96 (1): 367-374.

    Article  CAS  PubMed  Google Scholar 

  2. Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA: Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol. 2007, 581 (Pt 1): 389-403. 10.1113/jphysiol.2007.129700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ainslie PN, Lucas SJE, Burgess KR: Breathing and sleep at high altitude. Respir Physiol Neurobiol. 2013, 188 (3): 233-256. 10.1016/j.resp.2013.05.020.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephen Cheung.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartley, G., Watson, C., Ainslie, P. et al. Neuromuscular fatigue during hypoxia is mediated by the hypoxic ventilatory response. Extrem Physiol Med 4 (Suppl 1), A41 (2015).

Download citation

  • Published:

  • DOI: