- Meeting abstract
- Open access
- Published:
Brain blood flow and hyperventilation on cold water immersion: can treading water help control these symptoms of cold shock?
Extreme Physiology & Medicine volume 4, Article number: A40 (2015)
Introduction
Cold-water immersion (CWI) elicits the cold shock response (CSR). The hyperventilatory component of the CSR causes a decrease in cerebral blood flow velocity (CBFv) potentially causing sensations of dizziness and increasing the risk of becoming unconscious and consequently drowning [1]. In these early minutes of CWI the current advice is to 'float first' and remain stationary [2] yet this strategy may not have any effect on ventilation and therefore brain CBFv. We tested the hypothesis that leg only exercise could offset the reduction in CBFv in a resting CWI (H1) and be absent in warm water immersion.
Methods
Seventeen participants consented and visited the laboratory 3 times; mean [SD]: age 21 [3]yrs; height 1.71 [.01]m; mass 70.9 [10.1]kg. All immersions were standardised by depth, duration, clothing (bathing suit) and time of day. Test conditions were a) a resting warm water immersion (WWI; 34.7 [2.6] °C), b) a resting CWI (CWI-R: 12.2 [0.5] °C), c) a CWI (12.1 [0.5] °C) where light exercise (leg kicking/treading water; 80 bpm-1) commenced 30-seconds after water entry (CWI-K). CBFv was measured using a transcranial Doppler at a fixed depth (61 [1] mm) over the middle cerebral artery. Oxygen uptake and ventilation were measured using an online gas analysis system. Perceptions of breathlessness were measured after 1, 3 and 5 minutes using an 11-point categorical scale (0-not at all breathless, 10-extremely breathless). ANOVA was used to analyse the data to an alpha level of 0.05.
Results
CWI induced significant changes in contrast to WWI (see Table 1).
Discussion
Leg kicking on CWI partially offset the reduction in CBFv that normally occurs on CWI; in contrast to a warm water control. WWI CBFv was only different to the CWI-R condition. This did not alleviate symptoms of breathlessness despite increased oxygen uptake and carbon dioxide production in the CWI-K condition; the hypothesis is only partially supported.
References
Mantoni T, Rasmussen JH, Belhage JH, Pott FC: Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion. Aviation. Space and Environmental Medicine. 2008, 79 (8): 765-768. 10.3357/ASEM.2216.2008.
Barwood MJ, Bates V, Long GM, Tipton MJ: Int J Aq Res Edu. 2011, 5: 147-163.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
Barwood, M., Burrows, H., Cessford, J. et al. Brain blood flow and hyperventilation on cold water immersion: can treading water help control these symptoms of cold shock?. Extrem Physiol Med 4 (Suppl 1), A40 (2015). https://doi.org/10.1186/2046-7648-4-S1-A40
Published:
DOI: https://doi.org/10.1186/2046-7648-4-S1-A40